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Abstract-In this paper is reported the development of a neural 
network (NN) based workstation for automated cell 
proliferation analysis, of cytological microscope images. The 
software of the system assists the expert biotechnologist during 
cell proliferation and chromosome aberration studies by 
automatically identifying metaphase spreads and stimulated 
nuclei on each digital image. After manual edition of metaphase 
false positives, the system automatically calculates the mitotic 
index (MI) i.e. the ratio of metaphases to stimulated nuclei of  a 
given tissue sample. The system reported has been able to 
classify correctly approximately 91% of the metaphases and 
stimulated nuclei, in a test set of 191 mitosis, 331 nuclei, and 387 
artefacts, obtained from 30 different microscope slides. Manual 
edition of false positives from the metaphase classification 
results allows the calculation of the MI with an error of 6.5%. 
Keywords - automated object recognition, mitotic index, 
metaphase finder 
 

I. INTRODUCTION 

 
 
Modern development of  a variety of chemical products used 
in industry, pharmaceuticals, cosmetics, and food additives, 
has created the need for fast and effective methods to 
evaluate its effects on cellular proliferation [1]. A reliable 
endpoint to evaluate and compare cell proliferation rates is 
the mitotic index (MI), which is the percentage of cells that 
are in the process of division. The mitotic index is usually 
determined through light-microscope analysis of slide 
preparations. The analyst identifies at least 2000 cells per 
slide and calculates the percentage of metaphase spreads 
found among the interphase  or “stimulated” nuclei. 
Metaphase identification on microscope slides is also 
performed during the scoring of radiation-induced 
chromosomal aberrations. This scoring is performed in order 
to assess the effects of radiation exposure due to medical 
treatment, accidental, or environmental exposure. This type 
of procedure is also labour intensive. For example, in order to 
detect exposure to low radiation doses of X or gamma rays, 
the frequency of occurrence of diccentric chromosomes in 
1000 metaphases must be analysed [2]. 
 
    Previous work on automatic metaphase finders includes: 
the Genetiscanner, with a true positive rate of 80% and a 
false positive rate of 20%  [3]. Reference [4] reports a 
supervised size and circularity criterion to detect metaphases, 
which provides a 78% true positive rate. Reference [5] 
reports an automatic system for metaphase identification and 
chromosome aberration analysis on preparations stained with 
flourescent dyes, a true positive rate (during metaphase 
identification) of 87.3%, and a false positive rate of 7.4%. 

Reference [6] reports a texture feature to classify previously 
segmented objects, into metaphase spreads and interphase 
nuclei, with true positive rates of 84% and 87% respectively. 
Reference [2] reports a system for automatic metaphase 
identification using a second derivative feature to detect the 
chromosomes inside of a metaphase. The true positive rate of 
the system is 74% with a false positive rate of 6 %. 
 
    In this paper is presented a NN-based workstation for 
improved automatic identification of metaphase spreads and 
nuclei on microscope slide images. Each microscope slide is 
automatically scanned for each of the fields of the 
microscope. Image processing techniques are used to 
segment the objects on each image. Ten different 
morphological features are measured on each segmented 
object. A neural net is used to classify each ten-feature vector 
into metaphase spreads and stimulated nuclei. Providing in 
this way automatic metaphase and nuclei identification 
during MI calculation, as well as automatic metaphase 
identification for manual chromosome aberration analysis. 
Given the small ratio of metaphases to nuclei involved during 
MI calculation,  manual deletion of false positives from the 
metaphases annotated by the system is necessary.  
 

II. SYSTEM DESCRIPTION 
 

    The image acquisition system consists of an optical 
microscope (Olympus BH2) with a motorised plate 
(Märzhauser, Germany) and a CCD B&W video camera 
attached (Cohu 4800). A 10X objective lens is used during 
image acquisition. A Matrox frame grabber with a 512x480 
pixel resolution was used for digitisation. The sample 
preparation details are described in [6].  
 
A. Image Segmentation 
 
    The object types for automated cell proliferation study 
purposes are: Metaphases (M), which include compact 
metaphase spreads (CM), and scattered metaphase spreads 
(SM); Stimulated nuclei (SN); and Artefacts (AF), which 
include non-stimulated nuclei (NSN) and cellular debris 
(CD). Examples of each object are shown in Fig 1. Digital 
images are pre-processed with a fourth order function to 
enhance the contrast of the stimulated nuclei [6]. 
 
    Recursive dilation [7] is next applied to each digital image 
to join the chromosomes inside scattered metaphase spreads. 
Pre-processed images are segmented by minimisation of  
within group variance [8]. The segmentation process 
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annotates each object on the digital image with a one-pixel 
width, closed, contour, as shown in Fig.1. Large artefacts and 
non-stimulated nuclei are eliminated at this stage applying an 
outlier exclusion criterion as follows. All objects with an area 
outside of the range [mean nuclei area - 3σ, mean metaphase 
area + 3σ] are discarded.  This procedure eliminates an 
average of 58% of the artefacts on each image.  
 

III. FEATURE EXTRACTION 
 
    Ten morphological features were used to characterise  each 
segmented object. The approach followed to select 
appropriate object features, was to calculate features similar 
to those  used by a human expert, during image annotation.  

 

 
 

Fig. 1. Segmented microscope image. 1. (SM) Scattered metaphase spread, 
2. (CM) Conglomerated metaphase spread, 3. (SN) Stimulated nuclei, 4. 

(CD) Cellular debris, 5. (NSN) Non-stimulated nuclei. 
 
A. Nuclei Identification Features 
    The human expert identifies stimulated nuclei mainly by 
its circular shape, grey level characteristics, and size. In 
consequence, the following features were included in the 
feature vectors of each object: form factor (FF), grey level 
mean (GM) and standard deviation (GSD), area (A).  
 
B. Metaphase identification features 
    The human expert identifies metaphase spreads mainly by 
the internal texture produced by the chromosomes inside each 
metaphase. Thus in order to increase the percentage of true 
positives, and to decrease the percentage of false positives 
during metaphase and nuclei classification, 5 textural features 
were added to the feature vectors of each object.  
 
   The MDWRE  [6] is the mean value of the depth-width 
ratio of the troughs in a horizontal scan line of the object 
image (Fig. 2). The standard deviation of the MDWRE 
(MDWRESD) of each object was included in the feature 

vectors, in order to detect the heterogeneity in the depth-
width ratios of the troughs of a  given object.  
 
    Three parameters related with the relative extrema density 
[9] were included to detect, at different scales, textural 
features due to the chromosomes inside of a metaphase. We 
defined the absolute extrema density (AED) as the number of 
crossings of a certain threshold value, on a horizontal scan-
line of the object image as shown in Fig. 2. The threshold 
value in Fig. 2 is calculated using the method described in 
[8], which corresponds to the optimum grey level value to 
segment chromosomes from the background on a metaphase 
image. Horizontal scan lines on each object image were 
sampled every 4 and every 20 pixels in the vertical direction. 
On each scan line, crossings were measured as shown in 
Fig.2. The total number of crossings at each line-sampling 
value were normalised dividing by the total object area in 
pixels These measures were named NC4/area and NC20/area 
respectively. An average measure  of texture was calculated 
as the total number of crossings, counted in all image lines 
per object area. This measure was named NC/area. 

 
Fig. 2 Absolute extrema density measurement 

 
    Cumulative grey level histograms of scattered metaphases 
showed a characteristic slope change as shown in Fig. 3. This 
is because scattered metaphases have a significant amount of 
homogeneous clear background (P1-P2 region), with dark 
stains corresponding to the chromosomes (P0-P1 region). P1 
corresponds to the BCV (Between Class Variance) grey level 
[8]. This grey level value is the optimal threshold separating 
background from chromosomes. Since P0, P1 and P2 are 
located just in the knees of the cumulated histogram, we 
defined intermediate points P0', P1', P1" and P2' in order to 
characterise the line segments (P0'-P1') and (P1"-P2'), where: 
P0’=P0+0.1*P2; P1’=0.9 *P1; P1’’=1.1*P1; P2’=0.9*P2. 
The histogram slope difference (CHSD) was calculated as the 
absolute difference of slopes of the first (P0’-P1’) and the 
second (P1’’-P2’) histogram sections, as shown in Fig.3. The 
measure was normalised dividing by the total object area 
(CHSD/area).  



Fig. 3, Histogram slope difference calculation 
 

IV. NEURAL NET CONSTRUCTION AND EVALUATION 

 
    A three layer feedforward architecture was used in this 
work for the different neural nets implemented for 
metaphase, nuclei, and artefact classification [10]. A data set 
of 909 patterns - 191 metaphases, 331 nuclei, and 387 
artefacts -  taken from 30 different microscope slides, was 
used to train and test each different NN. Each pattern 
included the ten features described in section III. The training 
data consisted of  80 metaphases, 135 nuclei and 150 
artefacts, taken at random from the data set. The evaluation 
set consisted of the remaining non-training patterns in the 
data set - 111 metaphases, 196 nuclei, and 237 artefacts. All 
NNs were trained using backpropagation with momentum 
(0.95) and adaptive learning rate (initial value of 0.01, 
learning rate increase of 1.05, learning rate decrease of 0.7, 
and maximum error ratio of 1.04). The hidden units use a 
hyperbolic tangent as activation function, and the output units 
use the logistic function [11].  
 
    Since each NN output can take any values between 0 and 
1, we followed an error criteria in order to assign a pattern to 
a certain class. The usual approach is to calculate the mean 
square error (4) and assign the pattern to the class with 
maximum output if the error is smaller than a selected 
threshold value. In this work a threshold value of 0.05 was 
used, this value minimises the number of misclassified 
objects. If the output error (4) is larger than 0.05 the 
corresponding input pattern is counted as a non-classified. 
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where  
 k is the number of classes (k=3 in this case); 
 Oi is the output unit i of the neural net.  
 
    Twelve NNs were constructed, each  with 10 input units, a 
varying number of hidden units (between 2 and 15), and three 
output units one for each class.  In order to select the best 
performing NN (optimal number of hidden units), we have to 
take into account the different miss-classification errors 
produced by the NN, emphasizing those errors that are most 

costly. These errors are typically specified in a confusion 
matrix [12]. Since we developed three-class classifiers we 
have a 3-by-3 confusion matrix for each NN, with 3 correct 
classifications and 6 different errors the classifier can make. 
Additionally we have a certain number of  non-classified 
objects (i.e. the objects that the NNs were not able to include 
in any of the specified three classes).   
 
    In order to consider all the terms in the confusion matrix 
plus the proportion of non-classified objects, an adhoc 
performance measure has been constructed. We have 
considered the difference of all correctly classified patterns 
(true positives) minus the sum of the lost (false negatives) 
and misclassified (false positives) patterns multiplied by a 
weight (i.e. error cost value). The best NN is the one that 
maximises (5). A perfect NN would have a value of 1 (for 
100% efficacy), and a totally imperfect one would have a 
value of -1 (for 0% efficacy). 
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where  
ρi is the weight (i.e. error cost value) of the i class; 
Ki is the number of patterns assigned to each of the classes 
metaphases, nuclei, and artefacts; 
Cij are the elements of the confusion matrix; 
NCLi is the number of non-classified objects of each class. 
 
    The mitotic index is defined as the ratio of metaphases 
(scattered + conglomerated) to stimulated nuclei as shown in 
(3). Usually 2000 objects (metaphases + stimulated nuclei) 
are used  in the calculation of the MI 
 

MI= NM/NSN    (3) 
 

where N indicates the number of objects of the classes 
metaphases (M) and stimulated nuclei (SN). 
 
    Typical MI values are between 2% to 5% for 2000 objects 
counted (M + SN = 2000). We assigned the following 
weights (ρi) for a mean MI of 3,5%: ρM = 0,965, ρn = 0,035, 
ρAR = 0.0. We have assigned a value of zero to this last 
weight since artefacts AR are not involved during MI 
calculation. Artefacts is a class created for a better 
identification of the two relevant classes M and SN. In other 
words, we don't mind if artefacts are for example non-
classified or well classified, but we care if they are assigned 
erroneously to the other classes (in which case ρM and ρn take 
this into account). The two best performing NNs were the 10-
9-3 (NNpfm=  0.776) and the 10-15-3 (NNpfm= 0.777).  Table I 
shows a comparison of the confusion matrices for these NNs. 
Table II shows  the proportion of non-classified objects.  

 
 



TABLE I 
 CONFUSION MATRICES FOR THE 10-9-3 AND 10-15-3 NNS  

 
TABLE II  

NON-CLASSIFIED OBJECTS 
����� � ��� 	�
�
� �  ���

� � � � � � � � � � � � �
 

�
0.027 0.054 � �
0.036 0.031 

���
0.051 0.088 
         

V. DISCUSSION 

 
    Table III shows, for the best two selected NNs,  the 
expected numbers of metaphases, nuclei and artefacts for an 
MI of 3.5%.  The expected sample sizes would be: 68 
metaphases, 1932 stimulated nuclei, 4900 artefacts. 
 

TABLE III  
EXPECTED NUMBERS OF CELLS AND ARTEFACTS FOR 10-9-3 AND 10-15-3 

NNS FOR MI CALCULATION (MI=3.5%). ALL VALUES ARE IN NO. OF 

OBJECTS 

 
    As we can see in Table III the number of metaphase false 
positives (145 for both NNs) is small enough for  manual 
selection of  true metaphases. At the last stage of analysis, 
our instrument displays to the user a final screen containing 
the shapes of all objects classified as metaphases. The user 
invests around two additional minutes to select with a pointer 
the true metaphases, this is a negligible amount of time 
compared to the 40 hours  needed for completely manual MI 
calculation. With this simple user intervention, the overall 
accuracy of the instrument increases to 6.47% for the 10-9-3 
NN. 
  

VI. CONCLUSIONS 

 
    The development of an automated system for cell 
proliferation analysis has been presented. A neural net 
classifier is used for semi-automatic MI calculation during 
cell proliferation studies as well as for chromosome 
aberration analysis, providing automatic identification of 
metaphase spreads and nuclei. The use of 10 morphometrical, 
photometrical, and textural features to train neural networks 
for automatic recognition of metaphases, nuclei, and artefacts 
in microscope images at low magnification values (10X), has 
been reported. Low magnification values enable a fast 
scanning of the microscope slides. The best performing 

neural net classifier (10-9-3) has been able to provide false 
negative, and false positive rates, suitable for practical use 
during automatic identification of metaphases, outperforming 
all previously reported systems for automatic identification of 
metaphases.  
 
    The system reported here used in conjunction with a 
systematic (i.e. repeatable) preparation of tissue samples [6], 
has the potential to achieve a performance suitable for regular 
laboratory use during automatic identification of metaphases 
and semi-automatic MI calculation in microscope images  at 
low (10X) magnification. 
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